HEAD OF TEAM | : | Prof. I Gede Wenten, Ph.D. |
TEAM MEMBERS | : | Prof. Dr. Subagjo, Dr. Danu Ariono, Khoiruddin, S.T., M.T. |
OFFICIAL ADDRESS | : | Laboratory of Downstream Processing Laboratory, ITB |
: | igw@che.itb.ac.id | |
EXTENDED ABSTRAct | : |
Electrodeionization (EDI) is the most common method to produce high purity water used for boiler feed water, microelectronic, and pharmaceutical industries. Commonly, EDI is combined with reverse osmosis (RO) to meet the requirement of EDI feed water, with hardness less than 1 ppm. However, RO requires a relatively high operating pressure and ultrafiltration (UF) as pretreatment which results in high energy consumption and high complexity in piping and instrumentation. In this work, UF was used as the sole pretreatment of EDI to produce high purity water. Tap water with conductivity 248 μS/cm was fed to UF-EDI system. The UF-EDI system showed good performance with ion removal more than 99.4% and produced water with low conductivity from 0.2 to 1 μS/cm and total organic compounds less than 0.3 ppm. Generally, product conductivity decreased with the increase of current density of EDI and the decrease of feed velocity and UF pressure. The energy consumption for UF-EDI system in this work was 0.89–2.36 kWh/m3. These results proved that UF-EDI system meets the standards of high purity water for pharmaceutical and boiler feed water with lower investment and energy consumption than RO-EDI system.